Copied to
clipboard

G = C10xC32:C4order 360 = 23·32·5

Direct product of C10 and C32:C4

direct product, metabelian, soluble, monomial, A-group

Aliases: C10xC32:C4, (C3xC6):C20, C3:S3:2C20, (C3xC30):5C4, C32:1(C2xC20), (C5xC3:S3):7C4, (C3xC15):11(C2xC4), (C2xC3:S3).2C10, (C10xC3:S3).4C2, C3:S3.3(C2xC10), (C5xC3:S3).7C22, SmallGroup(360,148)

Series: Derived Chief Lower central Upper central

C1C32 — C10xC32:C4
C1C32C3:S3C5xC3:S3C5xC32:C4 — C10xC32:C4
C32 — C10xC32:C4
C1C10

Generators and relations for C10xC32:C4
 G = < a,b,c,d | a10=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 216 in 52 conjugacy classes, 20 normal (16 characteristic)
Quotients: C1, C2, C4, C22, C5, C2xC4, C10, C20, C2xC10, C32:C4, C2xC20, C2xC32:C4, C5xC32:C4, C10xC32:C4
9C2
9C2
2C3
2C3
9C4
9C4
9C22
2C6
2C6
6S3
6S3
6S3
6S3
9C10
9C10
2C15
2C15
9C2xC4
6D6
6D6
9C2xC10
9C20
9C20
2C30
2C30
6C5xS3
6C5xS3
6C5xS3
6C5xS3
9C2xC20
6S3xC10
6S3xC10

Smallest permutation representation of C10xC32:C4
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(11 57 26)(12 58 27)(13 59 28)(14 60 29)(15 51 30)(16 52 21)(17 53 22)(18 54 23)(19 55 24)(20 56 25)
(1 49 39)(2 50 40)(3 41 31)(4 42 32)(5 43 33)(6 44 34)(7 45 35)(8 46 36)(9 47 37)(10 48 38)(11 57 26)(12 58 27)(13 59 28)(14 60 29)(15 51 30)(16 52 21)(17 53 22)(18 54 23)(19 55 24)(20 56 25)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 45 26 35)(12 46 27 36)(13 47 28 37)(14 48 29 38)(15 49 30 39)(16 50 21 40)(17 41 22 31)(18 42 23 32)(19 43 24 33)(20 44 25 34)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (11,57,26)(12,58,27)(13,59,28)(14,60,29)(15,51,30)(16,52,21)(17,53,22)(18,54,23)(19,55,24)(20,56,25), (1,49,39)(2,50,40)(3,41,31)(4,42,32)(5,43,33)(6,44,34)(7,45,35)(8,46,36)(9,47,37)(10,48,38)(11,57,26)(12,58,27)(13,59,28)(14,60,29)(15,51,30)(16,52,21)(17,53,22)(18,54,23)(19,55,24)(20,56,25), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,45,26,35)(12,46,27,36)(13,47,28,37)(14,48,29,38)(15,49,30,39)(16,50,21,40)(17,41,22,31)(18,42,23,32)(19,43,24,33)(20,44,25,34)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (11,57,26)(12,58,27)(13,59,28)(14,60,29)(15,51,30)(16,52,21)(17,53,22)(18,54,23)(19,55,24)(20,56,25), (1,49,39)(2,50,40)(3,41,31)(4,42,32)(5,43,33)(6,44,34)(7,45,35)(8,46,36)(9,47,37)(10,48,38)(11,57,26)(12,58,27)(13,59,28)(14,60,29)(15,51,30)(16,52,21)(17,53,22)(18,54,23)(19,55,24)(20,56,25), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,45,26,35)(12,46,27,36)(13,47,28,37)(14,48,29,38)(15,49,30,39)(16,50,21,40)(17,41,22,31)(18,42,23,32)(19,43,24,33)(20,44,25,34) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(11,57,26),(12,58,27),(13,59,28),(14,60,29),(15,51,30),(16,52,21),(17,53,22),(18,54,23),(19,55,24),(20,56,25)], [(1,49,39),(2,50,40),(3,41,31),(4,42,32),(5,43,33),(6,44,34),(7,45,35),(8,46,36),(9,47,37),(10,48,38),(11,57,26),(12,58,27),(13,59,28),(14,60,29),(15,51,30),(16,52,21),(17,53,22),(18,54,23),(19,55,24),(20,56,25)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,45,26,35),(12,46,27,36),(13,47,28,37),(14,48,29,38),(15,49,30,39),(16,50,21,40),(17,41,22,31),(18,42,23,32),(19,43,24,33),(20,44,25,34)]])

60 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B5C5D6A6B10A10B10C10D10E···10L15A···15H20A···20P30A···30H
order12223344445555661010101010···1015···1520···2030···30
size119944999911114411119···94···49···94···4

60 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C4C4C5C10C10C20C20C32:C4C2xC32:C4C5xC32:C4C10xC32:C4
kernelC10xC32:C4C5xC32:C4C10xC3:S3C5xC3:S3C3xC30C2xC32:C4C32:C4C2xC3:S3C3:S3C3xC6C10C5C2C1
# reps12122484882288

Matrix representation of C10xC32:C4 in GL4(F61) generated by

52000
05200
00520
00052
,
1000
0100
0001
006060
,
606000
1000
0001
006060
,
00600
00060
60000
1100
G:=sub<GL(4,GF(61))| [52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,60],[60,1,0,0,60,0,0,0,0,0,0,60,0,0,1,60],[0,0,60,1,0,0,0,1,60,0,0,0,0,60,0,0] >;

C10xC32:C4 in GAP, Magma, Sage, TeX

C_{10}\times C_3^2\rtimes C_4
% in TeX

G:=Group("C10xC3^2:C4");
// GroupNames label

G:=SmallGroup(360,148);
// by ID

G=gap.SmallGroup(360,148);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-3,3,120,8404,142,11525,455]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C10xC32:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<